The G(2) DNA damage checkpoint targets both Wee1 and Cdc25.
نویسندگان
چکیده
The onset of mitosis is controlled by the cyclin dependent kinase Cdc2p. Cdc2p activity is controlled through the balance of phosphorylation and dephosphorylation of tyrosine-15 (Y15) by the Wee1p kinase and Cdc25p phosphatase. In the fission yeast Schizosaccharomyces pombe, detection of DNA damage in G(2) activates a checkpoint that prevents entry into mitosis through the maintenance of Y15 phosphorylation of Cdc2p, thus ensuring DNA repair precedes chromosome segregation. The protein kinase Chk1p is the endpoint of this checkpoint pathway. We have previously reported that overexpression of Chk1p causes a wee1(+)-dependent G(2) arrest, and this or irradiation leads to hyperphosphorylation of Wee1p. Moreover, Chk1p directly phosphorylates Wee1p in vitro. These data suggested that Wee1p is a key target of Chk1p action in checkpoint control. However, cells lacking wee1(+) are checkpoint proficient and sustained Chk1p overexpression arrests cell cycle progression independently of Wee1p. Therefore, up-regulation of Wee1p alone cannot enforce a checkpoint arrest. Chk1p can also phosphorylate Cdc25p in vitro. These phosphorylation events are thought to promote the interaction with 14-3-3 proteins the cytoplasmic retention of the 14-3-3/Cdc25p complexes. However, we show here that the G(2) DNA damage checkpoint is intact in cells that regulate mitotic entry independently of Cdc25p. Further, these cells are still sensitive to Chk1p-mediated arrest, and so down-regulation of Cdc25p is also insufficient to regulate checkpoint arrest. Conversely, inactivation of both wee1(+) and cdc25(+ )abolishes checkpoint control. We also show that activation of the G(2) DNA damage checkpoint induces a transient increase in Wee1p levels. We conclude that the G(2) DNA damage checkpoint simultaneously signals via both up-regulation of Wee1p and down-regulation of Cdc25p, thus providing a double-lock mechanism to ensure cell cycle arrest and genomic stability.
منابع مشابه
A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system.
A detailed model of the G(2) DNA damage checkpoint (G2DDC) system is presented that includes complex regulatory networks of the mitotic kinase Cdc2, phosphatase Cdc25, Wee1 kinase, and damage signal transduction pathways involving Chk1 and p53. Assumptions on the kinetic equations of the G2DDC are made, and computer simulations are carried out to demonstrate how the various subsystems operate t...
متن کاملAntagonism of Chk1 signaling in the G2 DNA damage checkpoint by dominant alleles of Cdr1.
Activation of the Chk1 protein kinase by DNA damage enforces a checkpoint that maintains Cdc2 in its inactive, tyrosine-15 (Y15) phosphorylated state. Chk1 downregulates the Cdc25 phosphatases and concomitantly upregulates the Wee1 kinases that control the phosphorylation of Cdc2. Overproduction of Chk1 causes G(2) arrest/delay independently of DNA damage and upstream checkpoint genes. We utili...
متن کاملDNA replication checkpoint control of Wee1 stability by vertebrate Hsl7
G2/M checkpoints prevent mitotic entry upon DNA damage or replication inhibition by targeting the Cdc2 regulators Cdc25 and Wee1. Although Wee1 protein stability is regulated by DNA-responsive checkpoints, the vertebrate pathways controlling Wee1 degradation have not been elucidated. In budding yeast, stability of the Wee1 homologue, Swe1, is controlled by a regulatory module consisting of the ...
متن کاملA human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase
BACKGROUND In human cells, the mitosis-inducing kinase Cdc2 is inhibited by phosphorylation on Thr14 and Tyr15. Disruption of these phosphorylation sites abrogates checkpoint-mediated regulation of Cdc2 and renders cells highly sensitive to agents that damage DNA. Phosphorylation of these sites is controlled by the opposing activities of the Wee1/Myt1 kinases and the Cdc25 phosphatase. The regu...
متن کاملTransformation/transcription domain-associated protein (TRRAP)-mediated regulation of Wee1.
The G2 DNA damage checkpoint inhibits Cdc2 and mitotic entry through the dual regulation of Wee1 and Cdc25 by the Chk1 effector kinase. Upregulation of Chk1 by mutation or overexpression bypasses the requirement for upstream regulators or DNA damage to promote a G2 cell cycle arrest. We screened in fission yeast for mutations that rendered cells resistant to overexpressed chk1(+). We identified...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 113 ( Pt 10) شماره
صفحات -
تاریخ انتشار 2000